Recent Progress of JT-60SA Project H. Shirai¹, P. Barabaschi², Y. Kamada³ and the JT-60SA ¹JT-60SA Project Leader, ²EU Project Manager, ³JA Project Manager ## JT-60SA (JT-60 Super Advanced) Project JT-60SA Project is implemented under the Broader Approach (BA) Agreement between EU and Japan as well as the Japanese national fusion programme. #### Mission: Contribute to the early realization of fusion energy by addressing key physics and engineering issues for ITER and DEMO. #### **Major Objectives:** - (1) Supportive Researches for ITER - JT-60SA starts operation in 2019 - → address ITER related issues in advance and optimize its operation scenarios under the break-even condition - (2) Complementary Researches for DEMO study long sustainment of high integrated performance plasmas with high β_N value - (3) Foster Next Generation build up experience of young scientists and technicians who will play leading roles in ITER and DEMO. (full current inductive mode) | (| , | |--------------------------------|--------------------| | Plasma Current | 5.5 MA | | Toroidal Field | 2.25 T | | Major Radius | 2.96 m | | Minor Radius | 1.18 m | | Elongation, KX | 1.87 | | Triangularity, δ_X | 0.50 | | Safety factor, q ₉₅ | 3.0 | | Plasma Volume | 131 m ³ | | Heating Power | 41 MW | | Normalized beta, β_N | 3.1 | | | | # JT-60SA target region in relation to ITER and DEMO #### flexible shaping #### in-vessel coils Long sustainment of high integrated performance plasmas with high β_N value for DEMO will be investigated by making the best use of (1) powerful and versatile NBI&ECRF system, (2) flexible plasma shaping, (3) various kinds of in-vessel coils, and so forth. Existing JT-60 facilities (e.g. transformer substation, motor generators, etc.) are also reused as much as possible to reduce overall project cost. ### **Toroidal Field Coils (NbTi)** 18 TF coils plus 2 spare TF coils are being fabricated in France and Italy. TF coil cross section. NbTi conductor (6 DPs) (26mmx22mm) #### Two TF coils now in Naka Site 2nd coil "Brigitte" 1st coil "Annie" 3rd coil "Roberta" coming on the Pacific Ocean TF coil assembly around the vacuum vessel will start in December 2016. ### **Equilibrium Field Coils (NbTi)** All EF coils were manufactured with excellent accuracy in the circularity | TOI | mınımızır | 12 m | | | | |-----|-----------|-------------|--|-------------|-----| | | Diameter | Circularity | Requirement | fabrication | | | EF1 | 12.0 m | 0.3 mm | ≤8 mm | | | | EF2 | 9.6 m | 0.4 mm | ≤7 mm | Aug. 2016 | EF1 | | EF3 | 4.4 m | 0.2 mm | ≤6 mm | | | | EF4 | 4.4 m | 0.6 mm | ≤6 mm | Feb. 2013 | | | EF5 | 8.1 m | 0.6 mm | ≤7 mm | Jan. 2014 | | | EF6 | 10.5 m | 1.3 mm | ≤8 mm | Jan. 2014 | EF2 | | | EF4 | | A PARTIE AND PAR | | FF3 | ## Central Solenoid (Nb₃Sn) #### JT-60SA has 4 identical Central Solenoids (CS) One CS module is composed of 7 pancakes (6 OP and 1 QP). (2) insulation and stacking (3) impregnation (4) 1st CS module is now in NIFS waiting for cold test. Cryogenic transfer line # 7-6054 High Temperature Superconductor Current Leads, Advanced Superconducting Tokamak Coil Terminal Boxes and Valve Boxes High Temperature Superconductor Current Leads (HTS-CLs) using bismuth alloy (Bi-2223/AgAu) saves cooling power of the cryogenic system. (6 HTS-CLs (25.7kA) for TF coils, 20 HTS-CLs (20kA) for EF coils and CS) (test facility CuLTKa in KIT) 9 # Cryogenic Plant has been newly constructed in the Naka Site. # Refrigerator Cold Box & Auxiliary Cold Box **Helium Storage vessels** **Warm Compressors** to- Naka Site on 27 May 2015 **Construction Work in Naka Site** # 7-6054 Commissioning of the Cryogenic System was successfully completed. - The total power equivalent at 4.5K is about 9kW. (world largest class refrigerator for a fusion plant before ITER) - Adoption of Auxiliary Cold Box facilitates heat load smoothing. - Actual operational condition were tested and validated by the commissioning in Sep. 2016. **Compressor Building** six He gas storage vessels LN₂ tank # **7-605A** Fabrication of three cryostat parts 260 ton, 12 mø detailed design completed The state of s Outboard ### 340° Vacuum Vessel was completed Jointed at Naka-site ### Thermal Shields are being installed. High dimensional accuracy was achieved by careful welding work. | | actual | Requirement | |------------|--------|-------------| | horizontal | ± 5 mm | ± 30 mm | | vertical | -4 mm | +6/-4 mm | (Welding shrinkage in the torus direction was adjusted by welding with splice plates.) 40° VVTS in the VVTS manufacturer VVTS assembly will be completed in Nov. 2016. ### **Power Supply System** #### **SCMPS (Superconducting Magnet PS)** Base PS to provide DC current to the SC coils PS for EF2~EF5 and TF coils PS for CS1-4 modules, EF1,EF6 coils #### **SNU (Switching Network Unit)** **Booster PS to provide high voltage for** plasma breakdown and current ramp-up #### **QPC (Quench Protection Circuit)** Protection of SC coils when quench or PS failure occur 10 units for EF coils and CS modules #### **Motor Generator (reused facility)** Provide power for P-NBI, N-NBI, EF&CS PS H-MG: 18kV/400MVA, 2.6GJ T-MG: 18kV/215MVA, 4.0GJ # Powerful and versatile heating/CD by NBI and ECRF (41MW in total) #### **NBI** system P-NBI, 85keV, 12units × 2MW=24MW, 100s tangential 4u (CO:2u, CTR:2u), Perpendicular: 8u N-NBI, 500keV, 2units×5MW=10MW, 100s tangential, off-axis P-NB (perp.) P-NB(tang.) P-NB(tang.) P-NB(tang.) P-NB(tang.) (perp.) Beam acceleration of 85 keV was successfully demonstrated for 100s (P-NBI). (P-NBI ion source) Heating, current-drive and momentum-input profiles can be flexibly controlled. #### **ECRF** system - 9 Gyrotrons, 4 Launchers 7MW in total <5kHz power modulation - movable mirror at launcher - multi-frequency gyrotron 110GHz(2nd) (1MW,100s) + 138GHz(2nd) (1MW,100s) + 82GHz(fund.) (1MW, 1s) (start-up assist, wall cleaning) ## **Overall Progress of JT-60SA Project** JT-60SA assembly (Cryostat Base) **EF** coils Vacuum Vessel TF coils cold test facility lower EF coils Vacuum Vessel (340 deg.) VV Therma upper EF coils and CS Cryostat (body & top lid) power supplies Shield Magnet interface (HTS-CL) (340 deg.) cryoplant diagnostics #### Research Phases of JT-60SA - JT-60SA research phase starts with Hydrogen operation to conduct full commissioning. - JT-60SA is upgraded step by step. (power/duration of P-NBI&ECRF, divertor target material, remote handling availability) | (power/duration of P-NBI&ECKF, divertor target material, remote nandling availability) | | | | | | | | | | | | |--|----------|----------------------|---|----------------------------|--------------------|---|---------------|----------------|-----------------------------|--------------|--| | | Phase | Expected
Duration | | Annual
Neutron
Limit | Remote
Handling | Divertor | P-NB
85keV | N-NB
500keV | ECRF
110 GHz
& 138GHz | Max
Power | Power x Time | | Initial | phase I | 1-2y | Н | - | | LSN
partial-
monoblock | 10MW | | 1.5MW
x100s | 23MW | | | Research
Phase | phase II | 2-3y | D | 4E19 | R&D | Carbon Div.Pumping | Perp. | | 1.5MW
x5s | 33MW | NB: 20MW x 100s
30MW x 60s
duty = 1/30 | | Integrated
Research | phase I | 2-3y | D | 4E20 | | LSN
full-monoblock | 13MW
Tang. | 10MW | | 37MW | ECRF: 100s | | Phase | phase II | >2y | D | 1E21 | | Carbon
Div. Pumping | ΔWM | TOMITY | 7MW | 3714144 | | | Extended
Research
Phase | | >5y | D | 1.5E21 | Use | DN/SN
full-monoblock
Metal or Carbon
Advanced
Structure | 24MW | | 71011 | 41MW | 41MW x 100s | | ITER Possibility of Partially W | | | | | | | | | | | | ITER H / He operation phase Possibility of W-coated full monoblock CFC (partially bulk W) divertor + full W-coated first wall + fully water-cooled Partially W (or W-coated CFC) divertor tiles (address compatibility of metallic divertor with integrated high performance plasmas) 18 # EU/JA Research Collaboration on JT-60SA Project Research collaboration on JT-60SA Project is strongly promoted. EU and JA fusion community members join "JT-60SA Research Unit" to study key physics and engineering issues of ITER and DEMO. 5th. EU&JA Research Coordination Meeting (May 2016, Naka) JT-60SA Research Plan (ver. 3.3) written by 378 authors from EU/JA was open to public in March 2016. http://www.jt60sa.org/pdfs/ JT-60SA_Res_Plan.pdf JT-60SA target region covers ITER target and DEMO target. Thus their acceptable parameters will be investigated by JT-60SA operation. ## JT-60SA as a flexible 'Test Stand' for ITER #### ITER like operation environment ITER like non-dimensional parameters, small-torque input Electron heating dominant plasma (by N-NBI, ECRF) Large fraction of energetic particle (500 keV N-NB) Operation scenario optimization with superconducting coils. #### High Plasma Performance H-mode operation (H, He, D) study ($I_p \sim 5.5$ MA) towards Q=10 L-H transition, Pedestal Structure, Confinement Improvement H-mode compatibility with radiative divertor, RMP, etc. Confinement in high n_{GW} regime Effect of Local Ripple, Error Field / noise on confinement Improved H-mode (Hybrid) operation with ITER-like shape ($I_p \sim 4.6$ MA) #### Divertor Integrity ELM mitigation (RMP, pellet pacing, etc.) & small / no ELM regime at low v^* Divertor Heat Load reduction (radiative divertor, ITER-like divertor config.) Disruption avoidance & mitigation at high I_D (MGI, etc.) • High β_N plasma MHD instability suppression at small~zero rotation condition # Research and Development for tokamak operation #### TH/P2-19 (N. Hayashi) [Tue.] Core-edge coupled predictive modeling of JT-60SA high-beta steady-state plasma with impurity accumulation has been studied. 1.5D core transport solver (TOPICS) + IMPACT using SONIC Ar edge densities → Ar seeding is effective for reduction of divertor heat load below 10 MW/m². Ar¹⁶⁻¹⁸⁺ accumulation in core causes slight decrease of temperature, which is fully recoverable by additional core heating. ← Ar density profile calculated by SONIC #### **EX/P8-31 (D. Douai) [Fri.]** **EC Wall Conditioning (ECWC)** experiments to support JT-60SA operation have been performed by TCV. Optimized combination of B_H and B_V are required for effective wall conditioning. ## **Summary of JT-60SA Project** - 1. Fabrication, installation and commissioning of JT-60SA components and systems procured by EU and Japan are steadily progressing. TF coil assembly around the vacuum vessel will start soon. JT-60SA starts operation in 2019. - 2. Powerful and versatile NBI/ECRF system, flexible plasma shaping, various kinds of in-vessel coils are advantage of JT-60SA for plasma control. - 3. JT-60SA will explore ITER and DEMO relevant parameter region in advance for the purpose of optimization of their operational scenarios, especially in high β_N (~5) region. - 4. Close research collaboration between EU and Japan has been promoted. JT-60SA Research Plan v.3.3 by 378 researchers from EU and Japan released in March 2016 elaborates on key physics and engineering issues to be addressed for ITER and DEMO. FIP/4-1Rb (P. Decool) # JT-60SA related presentations in this conference | BA-Satellite Tokamak Program | - | |------------------------------|---| | 18 Oct (Tue) | | | FIP/1-3Ra (J. Hiratsuka) | Long-pulse acceleration of 1MeV negative ion beams toward ITER and JT-60SA neutral beam injectors & towards powerful negative ion beams at the test facility ELISE for the ITER and DEMO NBI system | | TH/P1-18 (T. Bolzonella) | Securing high β_N JT-60SA operational space by MHD stability and active control modelling | | TH/P2-19 (N. Hayashi) | Core-edge coupled predictive modeling of JT-60SA high-beta steady-state plasma with impurity accumulation | | TH/P2-20 (M. Romanelli) | Investigation of Sustainable Reduced-Power non-inductive Scenarios on JT-60SA | | 19 Oct (Wed) | | | FIP/P4-42 (C. Day) | Assessment of the operational window for JT-60SA divertor pumping under consideration of the effects from neutral-neutral collisions | | 20 Oct (Thu) | | | TH/P6-24 (R. Zagorski) | Numerical analyses of baseline JT-60SA design concepts with the COREDIV code | | 21 Oct (Fri) | | | FIP/P7-37 (JC. Vallet) | Towards the completion of the CEA Contributions to the Broader Approach Projects | | EX/P8-31 (D. Douai) | Development of Helium Electron Cyclotron Wall Conditioning on TCV for the operation of JT-60SA | | EX/P8-40 (G. Giruzzi) | Physics and operation oriented activities in preparation of the JT-60SA tokamak exploitation | | FIP/4-1Ra (Y. Shibama) | Assembly Technologies of the Superconducting Tokamak on JT-60SA | | | | JT-60SA TF Coil Manufacture, Test and Preassembly by CEA