

Recent Progress of JT-60SA Project

H. Shirai¹, P. Barabaschi², Y. Kamada³ and the JT-60SA

¹JT-60SA Project Leader, ²EU Project Manager, ³JA Project Manager

JT-60SA (JT-60 Super Advanced) Project

JT-60SA Project is implemented under the Broader Approach (BA) Agreement between EU and Japan as well as the Japanese national

fusion programme.

Mission:

Contribute to the early realization of fusion energy by addressing key physics and engineering issues for ITER and DEMO.

Major Objectives:

- (1) Supportive Researches for ITER
 - JT-60SA starts operation in 2019
 - → address ITER related issues in advance and optimize its operation scenarios under the break-even condition
- (2) Complementary Researches for DEMO study long sustainment of high integrated performance plasmas with high β_N value
- (3) Foster Next Generation
 build up experience of young scientists and
 technicians who will play leading roles in
 ITER and DEMO.

(full current inductive mode)

(,
Plasma Current	5.5 MA
Toroidal Field	2.25 T
Major Radius	2.96 m
Minor Radius	1.18 m
Elongation, KX	1.87
Triangularity, δ_X	0.50
Safety factor, q ₉₅	3.0
Plasma Volume	131 m ³
Heating Power	41 MW
Normalized beta, β_N	3.1

JT-60SA target region in relation to ITER and DEMO

flexible shaping

in-vessel coils

Long sustainment of high integrated performance plasmas with high β_N value for DEMO will be investigated by making the best use of (1) powerful and versatile NBI&ECRF system, (2) flexible plasma shaping, (3) various kinds of in-vessel coils, and so forth.

Existing JT-60 facilities (e.g. transformer substation, motor generators, etc.) are also reused as much as possible to reduce overall project cost.

Toroidal Field Coils (NbTi)

18 TF coils plus 2 spare TF coils are being fabricated in France and Italy.

TF coil cross section.

NbTi conductor (6 DPs) (26mmx22mm)

Two TF coils now in Naka Site

2nd coil "Brigitte"

1st coil "Annie"

3rd coil "Roberta"

coming on the Pacific Ocean

TF coil assembly around the vacuum vessel will start in December 2016.

Equilibrium Field Coils (NbTi)

All EF coils were manufactured with excellent accuracy in the circularity

TOI	mınımızır	12 m			
	Diameter	Circularity	Requirement	fabrication	
EF1	12.0 m	0.3 mm	≤8 mm		
EF2	9.6 m	0.4 mm	≤7 mm	Aug. 2016	EF1
EF3	4.4 m	0.2 mm	≤6 mm		
EF4	4.4 m	0.6 mm	≤6 mm	Feb. 2013	
EF5	8.1 m	0.6 mm	≤7 mm	Jan. 2014	
EF6	10.5 m	1.3 mm	≤8 mm	Jan. 2014	EF2
	EF4		A PARTIE AND A PAR		FF3

Central Solenoid (Nb₃Sn)

JT-60SA has 4 identical Central Solenoids (CS)

One CS module is composed of 7 pancakes (6 OP and 1 QP).

(2) insulation and stacking

(3) impregnation

(4) 1st CS module is now in NIFS waiting for cold test.

Cryogenic transfer line

7-6054 High Temperature Superconductor Current Leads,

Advanced Superconducting Tokamak Coil Terminal Boxes and Valve Boxes

High Temperature Superconductor Current Leads (HTS-CLs) using bismuth alloy (Bi-2223/AgAu) saves cooling power of the cryogenic system.

(6 HTS-CLs (25.7kA) for TF coils, 20 HTS-CLs (20kA) for EF coils and CS)

(test facility CuLTKa in KIT) 9

Cryogenic Plant has been newly constructed in the Naka Site.

Refrigerator Cold Box & Auxiliary Cold Box

Helium Storage vessels

Warm Compressors

to-

Naka Site on 27 May 2015

Construction Work in Naka Site

7-6054 Commissioning of the Cryogenic System was successfully completed.

- The total power equivalent at 4.5K is about 9kW. (world largest class refrigerator for a fusion plant before ITER)
- Adoption of Auxiliary Cold Box facilitates heat load smoothing.
- Actual operational condition were tested and validated by the commissioning in Sep. 2016.

Compressor Building

six He gas storage vessels

LN₂ tank

7-605A Fabrication of three cryostat parts

260 ton, 12 mø

detailed design completed

The state of the s

Outboard

340° Vacuum Vessel was completed

Jointed at Naka-site

Thermal Shields are being installed.

High dimensional accuracy was achieved by careful welding work.

	actual	Requirement
horizontal	± 5 mm	± 30 mm
vertical	-4 mm	+6/-4 mm

(Welding shrinkage in the torus direction was adjusted by welding with splice plates.)

40° VVTS

in the VVTS manufacturer

VVTS assembly will be completed in Nov. 2016.

Power Supply System

SCMPS (Superconducting Magnet PS)

Base PS to provide DC current to the SC coils PS for EF2~EF5 and TF coils

PS for CS1-4 modules, EF1,EF6 coils

SNU (Switching Network Unit)

Booster PS to provide high voltage for plasma breakdown and current ramp-up

QPC (Quench Protection Circuit)

Protection of SC coils when quench or PS failure occur

10 units for EF coils and CS modules

Motor Generator (reused facility)

Provide power for P-NBI, N-NBI, EF&CS PS

H-MG: 18kV/400MVA, 2.6GJ T-MG: 18kV/215MVA, 4.0GJ

Powerful and versatile heating/CD by NBI and ECRF (41MW in total)

NBI system

 P-NBI, 85keV, 12units × 2MW=24MW, 100s tangential 4u (CO:2u, CTR:2u), Perpendicular: 8u

N-NBI, 500keV, 2units×5MW=10MW, 100s tangential, off-axis

P-NB (perp.)
P-NB(tang.)
P-NB(tang.)
P-NB(tang.)
P-NB(tang.)

(perp.)

Beam acceleration of 85 keV was successfully demonstrated for 100s (P-NBI).

(P-NBI ion source)

Heating, current-drive and momentum-input profiles can be flexibly controlled.

ECRF system

- 9 Gyrotrons, 4 Launchers
 7MW in total
 <5kHz power modulation
- movable mirror at launcher
- multi-frequency gyrotron 110GHz(2nd) (1MW,100s) + 138GHz(2nd) (1MW,100s) + 82GHz(fund.) (1MW, 1s)

(start-up assist, wall cleaning)

Overall Progress of JT-60SA Project

JT-60SA assembly (Cryostat Base)

EF coils Vacuum Vessel

TF coils

cold test facility

lower EF coils Vacuum Vessel (340 deg.)

VV Therma

upper EF coils and CS

Cryostat (body & top lid)

power supplies

Shield

Magnet interface (HTS-CL) (340 deg.) cryoplant

diagnostics

Research Phases of JT-60SA

- JT-60SA research phase starts with Hydrogen operation to conduct full commissioning.
- JT-60SA is upgraded step by step.

(power/duration of P-NBI&ECRF, divertor target material, remote handling availability)

(power/duration of P-NBI&ECKF, divertor target material, remote nandling availability)											
	Phase	Expected Duration		Annual Neutron Limit	Remote Handling	Divertor	P-NB 85keV	N-NB 500keV	ECRF 110 GHz & 138GHz	Max Power	Power x Time
Initial	phase I	1-2y	Н	-		LSN partial- monoblock	10MW		1.5MW x100s	23MW	
Research Phase	phase II	2-3y	D	4E19	R&D	Carbon Div.Pumping	Perp.		1.5MW x5s	33MW	NB: 20MW x 100s 30MW x 60s duty = 1/30
Integrated Research	phase I	2-3y	D	4E20		LSN full-monoblock	13MW Tang.	10MW		37MW	ECRF: 100s
Phase	phase II	>2y	D	1E21		Carbon Div. Pumping	ΔWM	TOMITY	7MW	3714144	
Extended Research Phase		>5y	D	1.5E21	Use	DN/SN full-monoblock Metal or Carbon Advanced Structure	24MW		71011	41MW	41MW x 100s
ITER Possibility of Partially W											

ITER
H / He
operation
phase

Possibility of W-coated full monoblock CFC (partially bulk W) divertor

+ full W-coated first wall

+ fully water-cooled

Partially W (or W-coated CFC) divertor tiles

(address compatibility of metallic divertor with integrated high performance plasmas) 18

EU/JA Research Collaboration on JT-60SA Project

Research collaboration on JT-60SA Project is strongly promoted.

EU and JA fusion community members join "JT-60SA Research Unit" to study key

physics and engineering issues of ITER and DEMO.

5th. EU&JA Research Coordination Meeting (May 2016, Naka)

JT-60SA Research Plan (ver. 3.3) written by 378 authors from EU/JA was open to public in March 2016.

http://www.jt60sa.org/pdfs/ JT-60SA_Res_Plan.pdf

JT-60SA target region covers ITER target and DEMO target.
Thus their acceptable parameters will be investigated by JT-60SA operation.

JT-60SA as a flexible 'Test Stand' for ITER

ITER like operation environment

ITER like non-dimensional parameters, small-torque input Electron heating dominant plasma (by N-NBI, ECRF) Large fraction of energetic particle (500 keV N-NB) Operation scenario optimization with superconducting coils.

High Plasma Performance

H-mode operation (H, He, D) study ($I_p \sim 5.5$ MA) towards Q=10 L-H transition, Pedestal Structure, Confinement Improvement H-mode compatibility with radiative divertor, RMP, etc. Confinement in high n_{GW} regime Effect of Local Ripple, Error Field / noise on confinement Improved H-mode (Hybrid) operation with ITER-like shape ($I_p \sim 4.6$ MA)

Divertor Integrity

ELM mitigation (RMP, pellet pacing, etc.) & small / no ELM regime at low v^* Divertor Heat Load reduction (radiative divertor, ITER-like divertor config.) Disruption avoidance & mitigation at high I_D (MGI, etc.)

• High β_N plasma MHD instability suppression at small~zero rotation condition

Research and Development for tokamak operation

TH/P2-19 (N. Hayashi) [Tue.]

Core-edge coupled predictive modeling of JT-60SA high-beta steady-state plasma with impurity accumulation has been studied.

1.5D core transport solver (TOPICS) + IMPACT using SONIC Ar edge densities →

Ar seeding is effective for reduction of divertor heat load below 10 MW/m². Ar¹⁶⁻¹⁸⁺ accumulation in core causes slight decrease of temperature, which is fully recoverable by additional core heating.

← Ar density profile calculated by SONIC

EX/P8-31 (D. Douai) [Fri.]

EC Wall Conditioning (ECWC) experiments to support JT-60SA operation have been performed by TCV.

Optimized combination of B_H and B_V are required for effective wall conditioning.

Summary of JT-60SA Project

- 1. Fabrication, installation and commissioning of JT-60SA components and systems procured by EU and Japan are steadily progressing. TF coil assembly around the vacuum vessel will start soon. JT-60SA starts operation in 2019.
- 2. Powerful and versatile NBI/ECRF system, flexible plasma shaping, various kinds of in-vessel coils are advantage of JT-60SA for plasma control.
- 3. JT-60SA will explore ITER and DEMO relevant parameter region in advance for the purpose of optimization of their operational scenarios, especially in high β_N (~5) region.
- 4. Close research collaboration between EU and Japan has been promoted. JT-60SA Research Plan v.3.3 by 378 researchers from EU and Japan released in March 2016 elaborates on key physics and engineering issues to be addressed for ITER and DEMO.

FIP/4-1Rb (P. Decool)

JT-60SA related presentations in this conference

BA-Satellite Tokamak Program	-
18 Oct (Tue)	
FIP/1-3Ra (J. Hiratsuka)	Long-pulse acceleration of 1MeV negative ion beams toward ITER and JT-60SA neutral beam injectors & towards powerful negative ion beams at the test facility ELISE for the ITER and DEMO NBI system
TH/P1-18 (T. Bolzonella)	Securing high β_N JT-60SA operational space by MHD stability and active control modelling
TH/P2-19 (N. Hayashi)	Core-edge coupled predictive modeling of JT-60SA high-beta steady-state plasma with impurity accumulation
TH/P2-20 (M. Romanelli)	Investigation of Sustainable Reduced-Power non-inductive Scenarios on JT-60SA
19 Oct (Wed)	
FIP/P4-42 (C. Day)	Assessment of the operational window for JT-60SA divertor pumping under consideration of the effects from neutral-neutral collisions
20 Oct (Thu)	
TH/P6-24 (R. Zagorski)	Numerical analyses of baseline JT-60SA design concepts with the COREDIV code
21 Oct (Fri)	
FIP/P7-37 (JC. Vallet)	Towards the completion of the CEA Contributions to the Broader Approach Projects
EX/P8-31 (D. Douai)	Development of Helium Electron Cyclotron Wall Conditioning on TCV for the operation of JT-60SA
EX/P8-40 (G. Giruzzi)	Physics and operation oriented activities in preparation of the JT-60SA tokamak exploitation
FIP/4-1Ra (Y. Shibama)	Assembly Technologies of the Superconducting Tokamak on JT-60SA

JT-60SA TF Coil Manufacture, Test and Preassembly by CEA