Long-term Fusion Vision, Strategy, and Role

M.C. Zarnstorff
PPPL

Presented to the NAS Committee for a Strategic Plan for US Burning Plasma Research
April 11, 2018
Outline

Perspectives on:
1. Status of US research supporting burning plasma science

2. PPPL plans that might strengthen or accelerate US research in burning plasma science

3. Strategic elements supporting a long-term vision for US fusion energy research and promote leadership in the field

Building on the talk by R.J. Hawryluk in Austin, TX
Summary

• **Strong participation in ITER** is the best approach to develop burning plasma research, technology, and understanding
 – advance to fusion energy research

• **Innovation is required to improve fusion energy prospects in US**
 – reduce size, cost, and increase efficiency, reliability of burning plasma
 – examples: liquid metals, compact tokamaks (ST) and stellarators, HTS, advanced materials...
 – advance towards commercial fusion power

• **Both provide opportunities for US leadership**
US Burning Plasma Research is Centered on ITER

• ITER is the US facility for burning plasma research
 – Construction is well along
 – Benefits from world-wide effort and investment

• US participation in science and technology development
 – Training of US personnel in all aspects
 – Significant US leadership

• Thru ITER: joint ownership of results, IP rights, expertise

-- The science and technology from ITER will inform all magnetic-confinement approaches
Status of US Burning Plasma Research Activities

- ITER design is largely fixed, candidate Q=10 scenarios identified
 - Steady state Q=5 scenario is still being investigated

- PPPL leading US diagnostic design and development
 Critical for ITER’s research capability
 Area of US leadership & responsibility, including port design

- Develop validated approaches for high-priority topics
 - Disruptions and runaway electron beams
 - Edge instability (ELM) suppression
 - Power-exhaust width
Disruption & Runaway Electron Mitigation

• SciDAC - Center for Tokamak Transient Simulations (PPPL led collab.)
 – 3D simulation of tokamak disruptions with conducting wall
 – Disruption dynamics, shattered pellet mitigation, connect to engr.

• SciDAC - SCREAM on runaway electron modeling (PPPL led collab.)
 – New results: generation & scattering by Whistler waves
 – Appears to explain puzzling experimental observations
 – ITER implications not yet evaluated

• Deep-learning pre-disruption trigger for mitigation (Internal funding)
• Rail-gun launched pellet mitigation, for hot plasma edge (Internal funding, with U. Washington)
Edge Instability Control Window Understood

- Building on experiments at DIII-D and NSTX
- Control of KSTAR edge stability using 3-rows of perturbation coils at edge
- Vary amplitude and toroidal phase of middle rows of coils
- Quantitative validation of theoretical model for edge instabilities control

Experimental Validation of Model

IPEC Prediction of stability Space

- Locking threshold exceeded
- Suppression threshold met

access to "hidden window"

Non-resonant 3D perturbations
• Initially understood thru heuristic drift-model (PPPL)

• Prediction for ITER: < 1mm heat flux width => very high heat flux

• XGC1 (PPPL) reproduces data variation, but predicts turbulence broadens ITER. Is this correct?

• NSTX-U will test broadening & mitigation by flux expansion
2. Accelerate Preparations for Burning Plasma Science: Integrated Modeling

- High fidelity integrated model of burning plasma thru DOE Exascale Proj.
- Initial focus: core-edge tight integration, building on SciDAC models

Integration Framework

Tight / loose coupling methods

Plasma-Material Interaction
Heating & Fueling
Large-scale Instabilities
Energetic Particles

Multi-scale time advance

See talk by A. Bhattacharjee
• Reduced fidelity, faster, integrated models under development
 – For predictive modeling of proposed experiments
 – For routine analysis of data
 – Verified with high-fidelity models
 – Validated on current experiments, including DIII-D and NSTX-U

• Especially important for high pressure (β) and bootstrap-current for long-pulse experiments, due to non-linear evolution of equilibrium

• Similar efforts starting for stellarators
Example: NSTX-U is studying α-particle instabilities applicable to ITER

NSTX-U will:
- assess confinement of fast-ions in high-performance ST regimes
- extend predictive capabilities for energetic particle dynamics in burning plasma regime

NSTX-U: Fast-ion dynamic range spanning ST and conventional A burning plasma regime

Vary beam pitch angle, pressure profile \rightarrow Assess mode stability as a function of ion phase space
3. Long-term Vision toward Fusion Energy

- ITER is a physics and technology experiment.
 Will provide knowledge & experience for fusion energy research.

- As in the 2004 NRC Burning Plasma Report, ITER is not a prototype for a commercial power reactor in the US.
 - Need higher performance for size and cost.

- Next steps based on ITER are larger and likely more expensive, e.g. EU DEMO.

<table>
<thead>
<tr>
<th>EU DEMO pulsed-ind.</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>R_0 (m)</td>
<td>9.0</td>
</tr>
<tr>
<td>a (m)</td>
<td>2.5</td>
</tr>
<tr>
<td>B_T (T)</td>
<td>6.5</td>
</tr>
<tr>
<td>I_p (MA)</td>
<td>16.8</td>
</tr>
<tr>
<td>f_{Boot}</td>
<td>36%</td>
</tr>
<tr>
<td>β</td>
<td>2.6%</td>
</tr>
<tr>
<td>$H_{98,y2}$</td>
<td>1.0</td>
</tr>
<tr>
<td>P_{thermal}</td>
<td>2.2 GW</td>
</tr>
<tr>
<td>P_{electric}</td>
<td>500 MW</td>
</tr>
</tbody>
</table>
In some countries, fusion will be developed by their government.

US: development of commercial fusion will be led by industry
 – Role of government is to enable by developing underlying science
 – Enable via public-private partnerships

Interest by start-up companies very important

Sign of success in developing scientific and technical basis for fusion
 – Assessment that gaps probably can be closed
 – Builds on world-wide experiments (all kinds) and ITER

Focus on prioritizing and resolving risks
 – At minimum scale (cost) and on a rapid timescale
Industry Requests

- Safety
- Long-term economically competitive
- Rapid construction and moderate capital cost per unit
- Licensing simplicity
- Reliability, availability, maintainability, inspectability (RAMI)
- Steady state, with load-following (quick shutdown/restart)
- Public acceptance
 - No need for wide-area evacuation

After EPRI, LIFE Adv. Committee

Not the same approach as some of our international partners
Implications: Innovation is Needed

• Robust, reliable operation – eliminate disruptions and “off normal events”
 – Thin first wall for T-breeding

• More efficient production of energy and use of plant
 – Higher fusion power density => higher β and/or B
 – Less recirculating power

• Smaller unit size than 1 GWe, especially during development

• Robust power handling with reduced maintenance

• Simplify, probably by elimination of some sub-systems

• Need long-lived materials, to reduce maintenance (esp. divertor)
Innovation Opportunities

• Liquid-metal boundaries (see M. Jaworski)
 – High power-flux, eliminate erosion, allows low-Z wall and higher confinement
 (NSTX-U, EAST?)

• Spherical tokamak (see S. Gerhardt)
 – More compact, high β, higher magnetic field utilization, lower capital cost
 (NSTX-U & MAST-U)

• Higher efficiency current drive
 – Helicon-wave and inside launch lower-hybrid current-drive (DIII-D & KSTAR)

• Compact stellarators / 3D-Tokamaks (committee’s teleconference)
 – Eliminate disruptions, eliminate current-drive; high β, high density, high gain
 (US led, but ?)
• **HTS magnets** (see M. Greenwald, S. Prestemon)
 – Higher B, higher current density, enables compact configurations
 – May allow simpler coil design

• **Advanced materials**
 – Longer life, higher strength at high temperature
 – Reduce maintenance, increase availability, increase thermal conv. efficiency

• **Use validated simulation to guide extrapolation** (See A. Bhattacharjee)
 – Reduce risks

• **Aim at a “pilot plant”** (see J. Menard)
 – Address integration risks at modest scale
 – Then mature technology and operating experience together
 – If innovations achieve high Q, net-power production is easier than life-time testing

PPPL is exploring many of these potential innovations with the community.
• During ITER construction and burning plasma operation:
 – Explore and mature innovations
 – Attempt multi-innovation integration, increasing TRL
 – Validate models for simulation

• Assess combined results from ITER and innovations in modeled projections

• Go forward when projected systems are compelling, and address commercial needs
 – Pilot Plant as small as credible, to reduce risks, build confidence
Strategy without ITER: Innovate

• US out of ITER: loss of technical expertise, experience, momentum
 – Missed iteration will delay US advance to burning plasma research
 – Recover by exploring and maturing innovations; integrating

• Assess results from innovations combined with world’s experiments in modeled projections, but will not have full ITER knowledge

• Go forward when projected systems are compelling, motivate funds
 – Recover burning plasma expertise and experience
 – May use innovations to partner with other programs post-ITER
 – Pilot Plant as small as credible, to reduce risks, build confidence
• **Strong participation in ITER** is the best approach to develop burning plasma research, technology, and understanding
 – advance to fusion energy research

• **Innovation is required to improve fusion energy prospects in US**
 – reduce size, cost, and increase efficiency, reliability of burning plasma
 – examples: liquid metals, compact tokamaks (ST) and stellarators, HTS, advanced materials...
 – advance towards commercial fusion power

• **Both provide opportunities for US leadership**