First divertor physics studies in Wendelstein 7-X
Thomas Sunn Pedersen1,2, on behalf of the W7-X team, in particular:

R. König1, M. Jakubowski1, Y. Feng1, A. Ali1, G. Anda6, J. Baldzuhn1, T. Barbiu5, C. Biedermann1, B. Blackwell3, H.-S. Bosch1, S. Bozhenkov1, R. Brakel1, S. Brezinsek4, J. Cai4, J.W. Coenen4, J. Cosfeld4, A. Dinklage1, T. Dittmar3, P. Drewelow1, P. Drews4, D. Dunai6, F. Effenberg5, M. Endler1, J. Fellinger1, O. Ford1, H. Frerichs5, G. Fuchert1, J. Geiger1, Y. Gao4, A. Goriaev13,14, M. Henkel4, K. Hammond1, J. Harris9, D. Hathiramani1, M. Henkel1, H. Hölbe1, Y. Kazakov13, C. Killer1, A. Kirschner4, A. Knieps4, M. Kobayashi11, P. Kornejew1, M. Krychowiak1, G. Kocsis6, S. Lazerzon7, C. Li4, Y. Li4, Y. Liang4, S. Liu4, J. Lore9, S. Masuzaki11, V. Moncada15, O. Neubauer4, T. T. Ngo16, H. Niemann1, J. Oelmann4, M. Otte1, V. Perseo1, F. Pisano9, A. Puig-Sitjes1, M. Rack4, M. Rasinski4, F. Reimold1, J. Romazanov4, L. Rudischhauser1, J.C. Schmitt7, G. Schlisio1, O. Schmitz5, B. Schweer4, S. Sereda4, T. Szepesi6, Y. Suzuki11, E. Wang4, Y. Wei4, U. Wenzel1, S. Wiesen4, V. Winters5, T. Wauters13, G. A. Wurden10, D. Zhang1, S. Zoletnik6

1Max-Planck-Institut für Plasmaphysik 2University of Greifswald, 3Australian National University, Canberra, Australia 4Forschungszentrum Jülich5 University of Wisconsin, Madison, 6Wigner Institute, 7Princeton Plasma Physics Laboratory, 8University of Cagliari, 9Oak Ridge National Laboratory, 10Los Alamos National Laboratory, 11National Institute for Fusion Science, 12Auburn University 13Laboratory for Plasma Physics, ERM/KMS Brussels14 Ghent University

13,14100 Impasse des Houllières, ZA Le Pontet, Meyreuil, France. 16 CEA, IRFM, Saint Paul-lez-Durance, France

This work was partially funded by the U.S. Department of Energy under grant DE-SC0014210

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.
Overview

- The path forward for W7-X in terms of upgrades to the PFCs
- The W7-X island divertor concept
- Heat load patterns during attached operation:
 - Spatial patterns
 - Scaling of heat fluxes
- Detachment at lower power, before boronization
- Effects of boronization
- Detachment at higher power, after boronization
- Summary
Successive upgrades to plasma-facing components

OP 1.1: 2015 - 2016
Graphite limiter configuration
P < 4.3 MW achieved
∫ Pdt ≤ 4 MJ achieved

OP 1.2: 2017 – 2018
Uncooled graphite divertor
P ≤ 7 MW achieved
∫ Pdt ≤ 200 MJ achieved

OP 2: 2021 ...
Actively cooled CFC divertor
Pcw ~ 10 MW (30 mins)
Divertor Γ ≤ 10 MW/m²
∫ P dt ≤ 18000 MJ

T. Sunn Pedersen et al., IAEA-FEC Meeting, Ahmedabad, India
Introducing the W7-X island divertor
Introducing the W7-X island divertor
Divertor heat load patterns for attached plasmas

Heat load patterns generally as expected,
See also M Jakubowski et al., this conference

For strike line motion and general issues with those: see J. D. Lore et al., this conference
A look onto a divertor unit halfway through OP1.2

- View into torus after OP1.2a: Visible signs of plasma-divertor contact
- The OP1.2 test divertors are uncooled, robust against overload ⇒ Ideal testbed for later operation with the water-cooled divertor which has a 10 MW/m² heat flux design specification
Attached divertor operation: heat loads are a function of density

- Standard island chain (5/5): scaling to P=10 MW looks good ($L_c \sim 240$ m)[1]
- High iota island chain (5/4): Scaling presents a challenge at low density ($L_c \sim 130$ m)[1]
- Higher density features more desirable scaling
- Primarily due to increased radiation but also indicative of large wetted area (up to 1.5 m2)

Full heat-flux detachment at high n_e, low $P \sim 3$ MW

Complete detachment for $t > 2$ s on all 10 divertors (one shown)

Heat flux essentially disappears from target for $t > 2$ s, persisting until end of plasma heating at $t = 4$ s

$t_\epsilon \sim 100$ ms rather constant for over 1 s

Increased radiation near the LCFS

Heat flux derived from IR camera data
But what about the particle exhaust (P~3 MW)?

- For low-power detachment, the subdivertor neutral pressure reaches about 5×10^{-5} mbar
 - In OP1.2: 2×10^4 l/s pumping rate (divertor turbopumps)
- The exhaust rate is therefore about 1 mbar-liter/s~2×10^{19} particles/s
- Compression ratio: About 7.5
- Expected/hoped: compression ratios of more than 30, subdivertor pressure $5-10 \times 10^{-4}$ mbar

Factor 7.5

5×10^{-5} mbar
After boronization: Reduced edge radiation, higher density

- Edge impurity concentrations (relative to hydrogen density):
 - Oxygen reduced by a factor of 10 (or a lot more, in some cases)
 - Carbon reduced by about a factor of 7

- Achieved hydrogen densities increased by factor >3:
 - Avoidance of MARFE-like phenomena
 - Achieved confinement times increased by ~60
 - Consistent with the increased density ($\tau_{E,LSS04} \propto n^{0.54}$), so:
 - Boronization was not the direct cause of increased confinement
 - Plasma core generally clean before and after boronization
Post-boronization detachment: Efficient exhaust

- High-density, higher-power (5-6 MW) detachment achieved after boronization
- Strong heat flux reduction
- Triggered in narrow density range in both upper and lower divertors
- Strong neutral compression now (x30):
 - $p_n = 5 \times 10^{-4}$ mbar now ($p_n = 0.5 \times 10^{-4}$ mbar for low-power detachment)
- All divertors detach but a somewhat stronger neutral compression (30%) is seen in the upper divertors.
- The particle removal rate is ~ 13 mbar-liter/s$\sim 2.6 \times 10^{20}$ particles/s – projects well to OP2 with divertor cryo-pumps and a 4x higher pumping rate:
 - Should result in 10^{21} particles/s removed – about the amount expected to be needed
Why the difference in neutral compression?

Low-power detachment: Factor 7 neutral compr.

High-power detachment: Factor 30 neutral compr.

• **Hypothesis (illustrated with cartoons):**
 - **At low power**, the plasma “runs out of energy” near the edge and radiates its energy away before it arrives at the island and the divertor
 - Oxygen and carbon act as “radiating mantle”
 - Therefore, the plasma does not “plug” the hole – neutrals can escape divertor region
 - See also Florian Effenberg’s talk directly following this one – using neon to trigger the same physics
 - **At high power**, after boronization, the plasma radiation cooling and condensation occurs further out, in the divertor
 - Therefore the plasma effectively “plugs the hole” – neutrals cannot escape divertor region (as designed…!)

• **The surprising thing is that also the low-power detachment can be stable without feedback stabilization.**
W7-X divertor works: Efficient particle exhaust, stable detachment

32 second discharge from last week, detached for the last 28 seconds

- Pulse terminates as preprogrammed – could have been extended
- Energy confinement time ~120 ms constant
- Efficient exhaust
 - Divertor neutral pressure ~ 6-7x10^-4 mbar
- Low impurity content
W7-X in general has very good confinement:
28-second detached discharge had H-L mode confinement

- W7-X discharges lie with the same range that regular tokamak H-mode discharges do.
- The 28 sec detached discharge has confinement between H- and L-mode.
- The triple product record shot (labeled “transient” here) lies above the H-mode scaling, and had reduced turbulent fluctuations (re. Th. Klinger overview talk).
Summary

• **First results with the W7-X island divertor were very successful**
 • The divertor heat load patterns were generally as expected
 • In attached operation, we observe large wetted areas and acceptable heat fluxes:
 • Projects well to future operation with water-cooled divertor
 • An indication of the benefits of long connection lengths
 • Stable detachment was achieved (two varieties)
 • Low-power, volumetric, limited particle exhaust
 • High-power, with high neutral compression, efficient particle exhaust
 • All divertors detached stably for 28 seconds @ 5MW – could have lasted much longer

• **Boronization was key; it enabled:**
 • Strong reduction of oxygen and carbon in SOL
 • Stable high hydrogen density operation
 • Access to detachment with efficient exhaust