OV/5-5

26th IAEA Fusion Energy Conference Kyoto International Conference Center, Kyoto, Japan, 17-22 Oct. 2016

Overview of Spherical Tokamak Research in Japan

Y. Takase¹, A. Ejiri¹, T. Fujita², N. Fukumoto³, K. Hanada⁴, H. Idei⁴, M. Nagata³, Y. Ono¹,
H. Tanaka⁵, A. Fukuyama⁵, R. Horiuchi⁶, S. Tsuji-Iio⁷, Y. Kamada⁸, Y. Nagayama⁶, Y. Takeiri⁶
¹U. Tokyo, ²Nagoya U., ³U. Hyogo, ⁴Kyushu U., ⁵Kyoto U., ⁶NIFS, ⁷Tokyo Inst. Tech., ⁸QST, Japan

Nationally Coordinated Research Using Various ST Devices* *TST-2, TS-3, TS-4, UTST, TOKASTAR-2, LATE, HIST, QUEST + theory/modeling

Contents

- I_p Start-up
 - RF Waves: ECW/EBW, LHW
 - CHI
 - AC OH
- Advanced Fueling
 - CT Injection
- Steady-State Operation
 - Particle Control by High Temperature Metal Wall
- Ultra-High-β Operation
 - Reconnection Heating by Plasma Merging
- Low-A Tokamak-Helical Hybrid
 - Stability Improvement by Helical Field

CS-less I_{p} Start-up by ECW/EBW

Non-inductive Production of Extremely Overdense ST Plasma by EBW Excited via O-X-B Method in LATE

Extremely overdense ST plasmas are produced non-inductively with EBW excited by O-X-B mode conversion when EBW is excited in the 1st propagation band (between ω_{ce} and $2\omega_{ce}$ layers). Density reaches ~ 6 times the cutoff density for 5 GHz microwave.

Density and soft X-ray emission increases when the $2\omega_{ce}$ layer is located on the outboard side of the upper hybrid resonance (UHR) layer, i.e., when EBW is excited in the 1st propagation band. Such B_t dependence is observed at two different microwave frequencies.

2.45GHz Microwave

Fukuyama, et al.

1-D Kinetic Full-Wave Analysis of O-X-B Mode Conversion by TASK/W1

Non-inductive ECH/CD with Waves at Two EX/P4-50 H. Idei, et al. Frequencies (8.2 GHz / 28 GHz) in QUEST

energetic electrons in the Energy [keV] central overdense region.

Bulk T_e and P_e increased in the overdense region where there are Doppler-shifted ω_{ce} resonance layers for large $N_{//}$.

Hard X-ray emission at high energies (>200 keV) was observed from the central overdense region, while bulk P_{a} was larger on the high-field side off-axis region near the $2\omega_{ca}$ layer for 28 GHz.

There were abundant

scale] FWD Intensity [logarithmic s

Measured bulk pressure P_e profile was hollow, resulting from the off-axis heating at the $2\omega_{ce}$ layer and radiation cooling after SDJs.

Current density profile and equilibrium pressure profile (EFIT) are centrally peaked.

8

50

High bulk T_e was observed near $2\omega_{ce}$ layer for 28 GHz, while a local T_e peak was observed near ω_{ce} layer for 8.2 GHz only before the 1st SDJ at t=1.75 s.

 $GHz]f_{ce}$

T = 1.75 s

[8.2 GHz] 2;

T [eV]bulk

electron

0 (b) without inboard side $R_{tan} = 0.714 \text{ m}$ $T_{HX} = 507 + -35 \text{ [keV]}$ $R_{tan} = 0.341 \text{ m}$ $T_{HX} = 231 + -10 \text{ [keV]}$ tangential view with inboard side 100 150 250 200

150

100

50

Local ECH/CD Non-inductive *I*_p Start-up in QUEST

Kirchhoff integral code was used for mirror design. Mirror performance at 28 GHz was checked by 3-D full-wave simulation. Sharply focused beam with small beam size (0.052 m) was obtained. The 2nd focusing mirror can steer the beam in the toroidal direction.

CS-less I_p Start-up by LHW

Two capacitively-coupled combline (CCC) antennas

- Traveling LHW is excited directly
- Sharp n_{||} spectrum & high directivity

Outboard-launch

Top-launch

TST-2

Good core accessibility and deposition are expected even at high $n_{\rm e}$. $I_p = 25$ kA achieved with outboard-launch antenna alone (improved from 16 kA)

collaboration with Moeller (GA, US)

Sustained I_p increases with n_e and B_t

Comparison of discharges sustained by outboard-launch and top-launch antennas

 $I_{\rm p}$ of up to 13 kA is sustained by the top-launch antenna alone. However, precise plasma position and size control during the initial $I_{\rm p}$ ramp-up phase is difficult.

Use outboard-launch for start-up and top-launch for ramp-up. (initial experiment in progress)

CS-less *I*_p Start-up by CHI

EX/P5-21 Nagata, et al.

Coaxial Helicity Injection (CHI)

HIST (U. Hyogo)

QUEST (Kyushu U.)

- These ST devices in US and Japan aim to develop and understand noninductive CHI start-up/ramp-up that is necessary for the viability of ST reactors.
- The successful current generation up to 0.3 MA in NSTX (PPPL) validated the capability of CHI for start-up followed by inductive ramp-up to 1 MA.
- A new CHI start-up experiment with an alternate electrode and insulator configuration, combined with ECH, will start on QUEST (Kyushu U.) under US-Japan collaboration.
- Primary purpose of CHI experiments on HIST (U. Hyogo) is to examine the physics of flux closure and current profiles which still remain key issues of CHI.

Characteristics of ST Plasmas Generated by CHI on HIST

Comparison of CHI generated plasmas between high and low bias flux operations.

- Peak *I*_p of 80-120 kA was generated by CHI. A stable closed flux formation was achieved in the high bias case.
- In the low bias case, the toroidal current density is concentrated on the inboard side, leading to kink instabilities at a later time.
- $T_{i,D}$ during the I_p rise phase in the low bias case is higher than $T_e \sim 10$ eV, indicating ion heating.
- $n_{\rm e}$ was ~1 × 10²⁰ m⁻³.

Plasmoid Formation and Flux Closure in CHI Plasmas

Experimental results from internal magnetic probe measurements

- Formation of closed flux surfaces

 (c) was vefified. The ratio of the closed flux to the total flux is 25-30%.
- Small-scale plasmoids (a), (b) are generated in the elongated toroidal current sheet (d), (e) in the presence of a strong B_t.
- 3. The plasmoid grows in size due to inward diffusion (e), (f) of the toroidal current in the open flux region during the decay phase .

AC Ohmic Heating Experiments on TST-2 (for pre-ionization and DC current drive)

H-bridge

Pre-ionization

Exponential growth in emission and I_p

- The growth rate and saturation in *I_p n_e* can be explained qualitatively by a model based on Townsend's α.
- Successful pre-ionization with $|V_{loop}| \ge 0.5 V (\sim 0.6 V/m).$

DC current drive

Advanced Fueling by CT Injection

CT Injection (CTI) as Advanced Fueling on QUEST

A CT plasma with high density (up to the order of 10^{21} m⁻³) was injected perpendicularly from the outboard midplane along the major radius at a speed > 200 km/s.

Compact toroid (CT) injection experiments have been conducted to develop an advanced fueling method.

UH-CT injector used in this experiment is capable of injecting a CT plasma that can penetrate to $B_{\rm t} = 0.8$ T.

CT Injection into OH ST Plasma

CT plasma injection:

- ($V_{\text{CT_form.}}$ = 17 kV and $V_{\text{CT_acc.}}$ = 25kV)
- CTI has no adverse effect on I_{p} .
- $n_{\rm e}$ increases just after CTI.
- » Non-disruptive CTI was obtained.

Thomson scattering measurement:

• $n_{\rm e}$ is observed to increase on peripheral channels 0.5 ms after CTI.

Diffusion and equilibration times of CT injected particles in the vicinity of CT deposition:

- 50~100 μs for central CT deposition
- 1.4~2 ms_for peripheral deposition
- » Peripheral particle deposition by CTI was observed.

Steady-State Operation

EX/P4-49 Hanada, et al.

Progress Towards Steady State: 115 min Discharge Achieved with P_{RF} = 40 kW, T_{wall} = 393 K

Microwave systems: 2.45 GHz : < 50kW 8.2 GHz: < 400kW 28 GHz: 300kW

Time Evolution of Wall Pumping Rate can be Reproduced by Hydrogen Barrier Model

 $\frac{d(H_w + H_T)}{dt} = \Gamma_{in}S - \frac{k}{Sd_R^2}H_W^2$ $\frac{dH_T}{dt} = \alpha H_W \left(1 - \frac{H_T}{H_T^0}\right) - \gamma H_T$

 dH_W/dt : wall pumping rate for H H_W : number of H dissolved in wall H_T : number of H trapped in defects H_T^0 : upper-limit of H trapped in defects S: surface area G_{in} : net influx per unit of area into wall

k : surface recombination coefficient of H

- $d_{\rm R}$: thickness of deposition layer
- a: H trapping rate

g: H de-trapping rate

#32700 ($T_{wall} = 473$ K: red dots) Solid lines indicate calculated results predicted by the hydrogen barrier model.

EX/P3-38 Y. Ono, et al. PD/P-11 Inomoto, et al.

tokamak enerav

Merging/ Reconnection Heating for Direct Access to Fusion Reaction

Ion Temperature A fusion reactor can maintain 2 10⁶ K reaction, once D-T plasma with $n\tau > 10^{20}$ m⁻³ s is heated to (<u>|||(((</u>) > 10 keV. 1 The key is how to increase $T_{\rm i}$ to over 10keV. NBI, In conventional tokamaks: RF CS Coil (P1) 1st: Ohmic heating $W = \eta I_t^2 \propto T_{a}^{-3/2} I_t^2$ + 2nd : Additional heating High T_i (NBI or RF) Outflŏw <u>10)(00)(11)</u> Merging of two toroidal B_{rec} plasmas can increase .3 their T_i . Radius [m]

Magnetic Field Lines Ion Temperature Profile

$B_{\rm rec}^2$ Scaling of Reconnection Heating Indicates Direct Access to α -heating without NBI, Leading to New High- $B_{\rm rec}$ Experiments: ST-40 & TS-U

ST40 : FIP/P7-19 M. Gryaznevich, et al. 21

weak vertical field condition.

Stability Improvement by Helical Field

UEDA, T., et al., Plasma Fusion Res. **10** (2015) 3402065.

 $Time(x10^{-3} s)$

22

- The radial movement of tokamak plasma was studied without probe insertion by a high-speed camera.
- The plasma touched the outer wall repeatedly in a discharge without helical field. In a discharge with helical field, the plasma position was stable and touched the inner wall during the discharge.
- The stabilization effect of the external helical field on the tokamak plasma horizontal position was confirmed in the TOKASTAR-2 experiment.

SAKITO, T., et al., Plasma Fusion Res. 11 (2016) 2402074.

For Further Details (at FEC2016)

• Ip Start-up

- ECW/EBW (EX/P4-45 Tanaka, et al., EX/P4-50 Idei et. al.,)
- LHW (EX/P4-48 Ejiri, et al.)
- CHI (EX/P5-21 Nagata, et al.)
- AC OH (EX/P4-48 Ejiri, et al.)
- Advanced Fueling
 - CT Injection (PD/P-16 Fukumoto, et al.)
- Steady-State Operation
 - Particle Control by High Temp. Wall (EX/P4-49 Hanada, et al.)
- Ultra-High-β Operation
 - Reconnection Heating (EX/P3-38 Y. Ono, et al., PD/P-11 Inomoto, et al.)